12,786 research outputs found

    Quantum knots in Bose-Einstein condensates created by counterdiabatic control

    Full text link
    We theoretically study the creation of knot structures in the polar phase of spin-1 BECs using the counterdiabatic protocol in an unusual fashion. We provide an analytic solution to the evolution of the external magnetic field that is used to imprint the knots. As confirmed by our simulations using the full three-dimensional spin-1 Gross-Pitaevskii equation, our method allows for the precise control of the Hopf charge as well as the creation time of the knots. The knots with Hopf charge exceeding unity display multiple nested Hopf links.Comment: 7 pages, 6 figure

    Temporal networks: slowing down diffusion by long lasting interactions

    Get PDF
    Interactions among units in complex systems occur in a specific sequential order thus affecting the flow of information, the propagation of diseases, and general dynamical processes. We investigate the Laplacian spectrum of temporal networks and compare it with that of the corresponding aggregate network. First, we show that the spectrum of the ensemble average of a temporal network has identical eigenmodes but smaller eigenvalues than the aggregate networks. In large networks without edge condensation, the expected temporal dynamics is a time-rescaled version of the aggregate dynamics. Even for single sequential realizations, diffusive dynamics is slower in temporal networks. These discrepancies are due to the noncommutability of interactions. We illustrate our analytical findings using a simple temporal motif, larger network models and real temporal networks.Comment: 5 pages, 2 figures, v2: minor revision + supplemental materia

    Magnetic excitation in a new spin gap compound Cu2_2Sc2_2Ge4_4O13_{13}: Comparison to Cu2_2Fe2_2Ge4_4O13_{13}

    Full text link
    The compound \CuScGeO is presented as a new member of the family of weakly coupled spin chain and dimer compounds \CuMGeO. Magnetic susceptibility, heat capacity, and neutron inelastic scattering measurements reveal that the compound has the same spin dimer component as \CuFeGeO. The observed narrow band excitation in bulk measurements is consistent with spin gap behavior. The energy scale of the weakly coupled dimers in the Sc compound is perfectly coincident with that in the Fe compound.Comment: 5 page
    • …
    corecore